PHYSICAL REVIEW E, VOLUME 64, 056501
Radiation damping in real time
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We study the nonequilibrium dynamics of a charge interacting with its own radiation, which originates the
radiation damping. Theeal-time equation of motion for the charge and the associated Langevin equation is
found in classical limit. The equation of motion for the charge allows one to obtain the frequency-dependent
coefficient of friction. In the lowest order we find that although the coefficient of static friction vanishes, there
is dynamical dissipation represented by a non-Markovian dissipative kernel.
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I. INTRODUCTION AND MOTIVATION In this paper we study the nonequilibrium dynamics of
radiation damping phenomenon, using the Schwinger-
The quantum dynamics of a dissipative system is still arKeldysh[9,14—18,10,19—21formulation of nonequilibrium
open problem in physics, where the standard quantizatiostatistical mechanics to obtain the real-time equations of mo-
scheme, that is based on the existence of either a Hamition for the charged particle. The choice in using the real-
tonian or a Lagrangian function for the system in which wetime field theory instead of the imaginary-tiniEuclidean
are interested, is not applicable. It is well known that weformalism, named after Matsubara, is the fact that, in Fourier
cannot obtain an equation of motion from the application oflanguage, the Matsubara formalism involves discrete com-
the classical Lagrange’s or Hamilton’s equations to any Laplex energies, which appear both on internal and external
grangian or Hamiltonian that has explicit time dependence.lines of Feynman diagrams. The internal energies have to be
Among some approaches to study this problem, there isummed over. The external energies, on the other hand, pose
one, proposed by Feynman and Verfjahthat gives a very a problem because they define the Green functions at a dis-
good result. Such approach can be used to study questiorsete set of points in the complex energy plane. But in order
related to quantum dissipative systefi23, phase transition to answer dynamical questions, a knowledge of real-time
[3], and in particular to the quantum dynamics of a BrownianGreen functions is usually indispensable. This implies that
particle [4]. Another important system with appropriated the temperature Green functions have to be extended from
characteristic that allows one to use this approach is théhe discrete energies to the real axis. This extension can be
study of quantum dynamics of accelerated charge. It is @btained by a process of analytic continuation, but in the
dissipative system once an accelerated charge loses energgase of several complex variables this is a mathematically
linear momentum, and angular momentum carried by the radifficult task. Even in the case of a single external energy,
diation field. The effect of these losses to the motion ofone is confronted with the problem that such an analytic
charge is known as radiation damping. extension is not unique without further delimitations. So the
Some works have been done about the motion of aatsubara formalism is well suited to the evaluation of static
charged particle under the effect of radiation damping. Justhermodynamic properties and the basic disadvantage of the
to cite some, in the classical limit we have the ones due tdMatsubara formalism lies in the unphysical representation of
Becker[5] and Lorentz[6] and in the relativistic limit the time and energy. Analytic continuation can be avoided by a
work by Dirac[7]. Another derivation of the radiation damp- different approach called real-time field theory, based on the
ing force is discussed by Hartemann and Luhmgttin) [8]. concept of a closed time contour in the complex plane run-
In that paper, HL obtained classically a covariant expressioming parallel to the real-time axis and back. It involves the
for the instantaneous radiation damping force on an acceleuse of both time- and antitime-ordered Green functions and
ated charged particle. This solution had eluded all authorgives rise to an effective doubling of the degrees of freedom.
before them, including those in Ref§,6,9-14. HL derived  In the real-time formalism, the Green functions can be di-
the Abraham-Becker radiation damping force classically forectly obtained as functions of continuous real energy
the first time. In this work we attempt to derive the samevariables.
radiation damping using quantum dynamics, getting the for- Using the real-time formalism, radiation field is treated in
mal solution of the equivalent quantum case that is in accorthe coherent states, since we are interested in obtaining the
dance with the results from HL, where the force is linear inequation of motion for the particle in the classical limit. This
the particle velocity. is achieved making a partial trace over the radiation field
In another paper, Barone and Caldejis8] obtained a getting the effective action for the particle and the corre-
nonrelativistic quantum formulation for an accelerated elecsponding Langevin equation.
tron. They made use of particle plus reservoir model, “inte- The Langevin equation leads us to identify the dissipative
grating out” the degrees of freedom of fields leading to ankernels and the noise correlation function that reflects the
effective action for the electron. They applied that formula-interaction of the charge with the radiation field. These two
tion to the problem of electronic interference. terms are related by the fluctuation-dissipation theof22h
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This paper is organized as follows. In Sec. Il we write 1 5 -
down the Hamiltonian of the system charge plus radiation Hi=3 > [PA () +K2aE, ()], 2.9
field, quantizing the field in terms of creation and annihila- K

tion operators in the conventional way. In Sec. lll, we inte-y hich have the form expected for the behavior of the radia-
grate out the radiation field degrees of freedom, obtaining thgq, field considered as a set of infinity uncoupled harmonic
effective action, the equation of motion in real time, and the,qiiators.

Langevin equation for the particle. We present our conclu- o quantizing this system, we make use of creation and
sions in Sec. IV pointing out directions of future research. Ing, hinilation operators, such that
the Appendix, we present the technical details leading to the ’

generating functional imeal time ho
Qia (1) = ﬂ[ak}\(t)—"ak}\(t)]y (2.10
Il. THE HAMILTONIAN OF THE SYSTEM
The Hamiltonian describing a charge interacting with its . /ﬁ_k toe

own radiation field can be written as Pia (D=1 2 [ () ~an (0], (21D

H=He+Hy (2.1 satisfying the usual commutation relation,
where [Gin (1), Py (D]=1.810 By (2.12

1 . - . .

He=s - (5—eA)? (2.2 With gf,()=0_4(t) andpf, (1) =p_in(t) since the vector

potential and its conjugate momentum are taken to be reals.
Substituting Eqs(2.10 and(2.1]) in the equationg2.8)

is the Hamiltonian of a moving chargeand massn in the and(2.9, we get

presence of electromagnetic fig2i3].
1( 5222, 5 Hzi(ﬁ—h[aT an])>+Hal, anl, (213
Hf:if d3x(E2+B?) (2.3 om DONEESI 0N fLSkn » Sindy .
where

is the the Hamiltonian of the electromagnetic figid].

We will use the gaug® -A=0 and$=0 once we sup- 7 o
pose the fields interacting with the charge was created by the ~ h[a], ,a,]=€>, ﬁ[alx(t) + & (D) Juin (X)),
charge in previous time, so when the charge interacts with ki

them, the fields are free. As free fields, they are transverse (2.14
fields, so the above conditions hold.
ExpandingA and its conjugated momentuiin terms of Hila), ,akx]=h% wp(@al (Da(t)+1/2). (2.15

normal mode$12] we get

. o As mentioned before, our main goal in this paper is to
A(x,t)=2 PNGLPNESE (2.9 study the dynamics of a charge interacting with its own ra-
KA diation field. Physically, we are interested in the correlation

function of the charge and not in the properties of the field.

|5(>Z,t)=z pkx(t)ﬁkx(;)v (2.5 So, we vinI apply the formalis_m of path integrgl i_n real time,
kn considering the photons coming from the radiation as a bath

that will be traced over to give us the effective action for the

where charge.
- - o .- As radiation field appears only when the charge is accel-
Upy (X) =L~ ey, explik - X) (2.6) : ol fi -

kn kn ' erated, we introduce an external classical field, under which

. . - the charge has an accelerated motion. This field couples to
that are plane waves in a box with volurhé and €,, (A the ch it h defing (t o
=1,2) are the polarization vectors satisfying the conditions € charge ase (t) where we can defing(t) as j(t)

K. 60 =0, ;kx';kw=5w- Gm\(;) are normalized as =e&(t), giving the following contribution to the Lagrangian:

e Lex= = I (1) X(1), (2.16
f Uk)\(X)'Ukr)\r(X)d X= 5kk’5)\)\’ . (27) ] ) .
where we suppose the field is switched ona0,
Substituting Eqs(2.4) and(2.5) into the charge and field s it 0
Hamiltonians we gef12] _— o if t<oO,
jm=y. . (2.17)
2 j if t>0,

He=-—|p—e DU (X) ] 2.8
¢ 2m P kzx G (8 Ui () 28 giving us the Lagrangian,
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o m- 6 - f IO d?w
T _ 92 o raft e aa iy _ . _1
LIX, 3y saxn]= 2X +Xe%\: \/ 2k[ak}\(t)+ak}\(t)]uk)\(x) Z[j]= trp(ti)f Y (a,x|Uj+(t, OO)p(tI)Uj,
—h 3 i@ (a0 + 12— (1) X(0). X(t,—)ly.a) 3.7
or
(2.18
1 1 o’ Y o7
Ill. THE REAL-TIME GENERATING FUNCTIONAL Z[j1= trp(ti)J dx f dy’pe(x",y" i)
There are different ways to fix the initial condition for this d2a dzy d2s
kind of problem, such as the one where the system in inter- J’ _— —<’y|pf(t )| 8)

est, in our case the particle, and the reseryitie radiation
field) are interacting since the beginnipg]. However, we - -, -, _1 -
will use one, where the total density matrix for the particle ><<)("“|LJJ'+("'_°°)|)( YNY '5|Uj‘ (t, =)y, @)
field is in thermal equilibrium at a temperatufeuntil the (3.9
particle decouples at the initial time=0 [1,24]. Here, the

interaction is switched on when the charge is put in the preswith

ence of the classical field, because it is when the particle

starts to radiat¢l1,24] and the system departs from the con- pe(X" Y ;1) =(X'| pe(t)]y"), (3.9
dition where the particle and the bath are in equilibrium
[25-28. lydz ladz .
At time zero we write the total density matrix as a product (¥lps(t)]6)= 7 H — 5t e Bhogy
of the density matrices for the free charge and its own radia-
tion field (the bath (3.10
p(t) =pe(t) @ p(t;), (31) Z(t)ZH [1—exp(—,8ﬁwk)]_1eﬁﬁ“’k/2. (3.12)
k=1
wherepg(t;) is the density matrix for the particle, consider-
ing it as a free particlepo(t;)= |x><x| andp;(t;) is the den- Nonequilibrium Green'’s functions are obtained as func-
sity matrix for the bath of photons in thermal equilibrium at tional derivatives with respect to the sourgemndJ (see the
temperatureT, given by Appendix. There are four types of free propagatf®sl4—
18,10,19-21 Using them, we get
efﬂHf
pf(ti): 7 ’ (32) . f
7 =
Z[13]=5 o) dx'dy’ pe(X',y’ ;)
with
X | DX*(r)Dx (7
Z=tre(e”AHr). (3.3 f (7) (7)
H; is the Hamiltonian for the free field given by E@.15. XeXp{L(SO[)Z+]_SO[;_])]Z[‘]"'"]_]’
The closure relation of the system chatgadiation field h
IS (3.12
d®a .. . where
J —NJ dx|x,a)(x,a|=1, (3.9
T R m \N2N-1 ~
Dx(7)=lim [(—) IT dxj] (3.13
where we use the coordinate representation for the particle Noos g0 | | 271 H i=1
X|X)=X|X) 35 and
and the coherent states representation for the field radiated So[X]= jt dr[ T)'zz(q.)_j*( X( T)}_ (3.14
by the particle —» (2
la)=|a)®|a)®- - ®|ay) (3.6)  So[X] is the action for the charge when it is not coupled to
the radiation field.
with N being infinity. The termZ[J*,J" ] in Eq. (3.12 plays the role of influ-
In terms of evolution operatod(t,—«) the generating ence functional24] equivalent to the harmonic oscillator
functional in real time is given by generating functiondl9,14-18,10,19,20)
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t t where the linear coupling acts as a ‘“source” term and may
Z[J+,J-]=exp|’ —2 2 | dr J_wdr'[azﬂ<r>JQ,<r'> be written as

e - s
X{0(r= 1)+ md+ 36 (13 (7 {007 —7) Ia(O=Ia(D= = ZmeX(V) a (0. (319

_ 1+t - ’ _ 11 + ’
1= I (DI (7 0= I (1) (1) So far, no approximation has been made, that is, our result

o for the generating functiondB.15 is exact.
X (1+ ) ]e T )] : (3.19 Writing 2[J*,J ] in terms of the particle coordinates, we
get the influence functional

> > t t e2 > ~ T+ > ~ St ]
FX X ]=ex —f dff dr' Y X (X7 (7) - eate™ X O{o(7—7')+ pd{X" (7" e Je* X ()
—o Jew da N7 2RKL3

—{x" (1) €} € O(7" = 1)+ pHX (7)) - € R X (X" (1) e} X D1+ 1)
XX (1) @€ ) X (1) g} €6 T O () (X (1) G JeR X (e onr=7) (3.17

that bears all the information about the effect of the radiation field on the charge. When there is no interaction between the
system of interest and environment the influence functional is equal to one.
This influence functional can be written as

2

o - t t e o o IO - -
HX+:X]:eXF{_f de dr'; ﬁkLg[X+(T)X+(T,)6Xp[ik-x+(7')+ik-X+(T’)Gk++(T—T')

X (X (7)expliK- X (1) +iK- X~ (7' )}Gp (7= 7))+ X (1)X* (')
X exp(ik-X~(7) +iK- X" ()} Gy (7= ) +X* ()X () expliK- X" (1) +iK-X(+)}G{ ~(r—17'),

(3.18

where - i . , . ,
Gy (7= 7)= g€ (Lt ey,

G (M il ) =G (b1, 1) O(t —ty) (3.20)

+G (MM 2,t) B(t—ty),

and 7= (e#"“k— 1)1 is the ocupation number. So, the gen-
G (rq,t1;r2,t)=G7(r1,t1;r5,15) 0(t,—ty) erating functional is

+G(ry,t;M2,t) Bt —ty),

. . Z[j1= fdi'd*' X'y t)Z[i1, ((3.22
G (ry, b1, t)=—G (ry,t1;r,,t), L] trp(t;) Yipexy 2l
G_+(Flvt1;F21t2):_G>(Flatl;F21t2) Where
:_G<(F2,t2§l?1,t1)y (3.19
with Z[j]zf DX (7)Dx ™ (r)exp{(i/H)S[x X" ]}
. (3.23
i . , . ,
Gr (7= 1) = 5 —[€°47)(L+ p+e "y,
2(1)k
(3.20 with
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e [ ca o (i~ q 3.2
S[xﬂx—]:f_wdrlgw(r)—x—<r>]—j<r>[x+<r> ) o2

2, . . . .
—x(n]+ ft dT’E %[)‘(’a(T))'(’b(T/) leading the influence function&B.18 to
— k

x explik - [X3(7) +x°(7' GE(r—7)] o i [t t e . .
f[x+,x_]=exp‘gf drf dr' >, SO
(3.29
anda,b=+,-.

To study the dynamic of the charge, we need to find the
equation of motion obeyed by the charge after we integrate
out the radiation field. At this point we are not able to handle
with the exact result above, so we need to use some approxi- . .
mation. The approximation we use is the background field +§‘(7)§+(7’)Gk‘+(r— T’)]]. (3.2
approximation in which one fluctuation from the classic field
is taken in account.

XGy (1= 1) X (DX (7)G (1 7')

+X (DX ()G (1= 7")

A. The equation of motion of charge and its properties In this limit, the equation of motion for the Charge can be

To use the background field approximation, we considePbtained in the background approximatior; (t) =q(t)

the situation where the exponentief™® can be approxi- T& (t), where (£°(t))=0 in all orders in perturbation
mated as theory. So the influence functlonalF[x X ~], reads

i 2 . . . .
f[&+é*]=ex;{;i—fxd7fmdr'2k = (6L (= )+ E (G (- )

. . . . H 2
+é<r>d<w>ek(r—7'>+§(r)&(T'>Gk*<T—T'>]]exp{%—ftwdffxdwzk 2Li3
X[EN(N)E ()G T (1= 1)+ E (DE ()G (1= 1) +E (DE ()G (r—1')

+E(NE ()G (- w)]}, (3.29)

where we usedG, (7—7)=G, "('—7) and G, " 22

+G, +G; t+G; “=0. Together with the condiion, TI'(7'—7")=— > [G{ (7' ~7)+G (7' —7]
(€% (t"))=0 and taking the perturbation theory up to second L=k
order, we get the following equation of motion:

_ 28 g ity —7")]

R g

o(r'—7"), (3.29

t N 5
[ e e e

N t
! + ’
{mq(r ) fﬂod% r in accordance with Eq3.19.
Integrating out ther’ in Eqg. (3.28), we get
X (7' =7)d(7") | +H(E(E (7)) () |=

(3.28 T)+f dr'S(7— 7 )V(7)

j(r), (3.30

where where
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wherel’(s) is the Laplace transform df (7— 7').

The presence of static damping coefficient is given by a
pole in G(s) with a negative real part, because this turns in
Making use of Eq(3.29, we find an exponential of velocity relaxation, as occurs in the damp-

ing harmonic oscillator.
2a? In the absence of interactiog(s) has a simple pole at
S(r—1")= s Ek (cos{wk( T—7)]6(7—1") s=0, that is, the static damping coefficient cancg(s)
=0] for (t—0), meaning that the system does not present
sifwy(7—17")] ) radiation damping. This is consistent with the discussions
+ w—k5(7_7 )]- (3.32 about the accelerated electrphl], where it is shown the
effect of radiation damping is relevant only for short time
As a consequence of the use of adiabatic approximationintervals (~ 10 ?*s for electron.

t
J dt'3(t—t')=0, (t<0) (3.33 B. Semiclassical Langevin equation

) ] ] ) Another important method used to study the nonequilib-
when we switch on the external classical field &0, if the  jym dynamics of a particle coupled to a dissipative medium
charge is with a constant velocity, for t<0, it will be s finding the equation of motion that looks like the Langevin
accelerated and will radiate, transfer energy and momentugquation for a particle taking in account the effect of the
to the radiated photons, getting to the process of dissipatiofinedium. This interaction introduces a stochastic dissipation
So, writing the velocity of charge ag(t)=vo+uv(t), we term in the equation of motion, both related by the
have fluctuation-dissipation theorem.
A description of the dynamic of nonequilibrium of the
- r . R system by the Langevin equation can be seen in many pa-
mv(THf dr'3(r—7")u(r")=](7) (3.3  pers, e.g[3,4], among others. In these papers, the starting
0 point is the application of the Feynman and Vernon formal-
considering Eq(3.33. ism [1] for the generating functional, what gives naturally

The solution for the equation of motion can be foundthe semiclassical Langevin equation.
The equation(3.23 is the first step that was already done.

using the Laplace transform of the veIocﬁ , self-ener . . - = )
9 b s) oy Now, considering new coordinatesandR, defined as

of the kerneli(s) and of the external forc}?(s). In terms of
the Laplace variabls, we get

N 1. -

- r(t)= §[x+(t)+x*(t)], (3.39

~ vot(j(s)/m)

U(S)= T (333

s+ —2.(s) . R .
m R()=X"(1)—x (1), (3.40

The evolution on the real time can be found via inverse

Laplace transform i
we find

- 1 ~
v(t)= Z—ﬂfceStv(s)ds, (3.36

_ | _ o Z1j1= f DF()DREMSRATR] (340
wherec is the Bromwich contour, that is at the imaginary

axe at the right of all singularities of(s) in the complex

plan s. For the purpose of understanding the real time dy'with

namics, we need to study the analytical structureG@t)

E[er(llm)i(s)]‘l. From Egs.(3.29 and(3.31) we have

2(s)=sl(s), (3.3 'é[F,FE]:ﬁ MRF(D-[(DR(DIdr (342
r s)—z—e2 - (3.39
7 L3 ® $+of . and
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the same form as the one obtained in the quantum Brownian

. i [t t e?
Fr,R]=exp %LwdrﬁxdT Ek: o

—R(T)R(”{G ()4 G ()-Gy ()

R(7)r(r')

G (M ———{G (DG ()

+G§7(T)—G|Z+(T)}+L{G

—Gk(T)—GQ(T)+Gk+(T)}]], (3.43

where GEP(7)=G2°(7— 7'). With the changer— 7' in the
third term of 7[r,R] and with Eq.(3.19), the influence func-
tional is

. it t
f[r,R]zexp[%f drf dr’

R(7)y (71— 7)r (")

+I§§(T)‘}/(T— T')ﬁ(r') } (3.44
with
e « sifw(7—1")
wir-r)="5 3 —"[“’kafk Ly
(3.45
and
ey EZ 2 Coiwk(r T’ I‘('Bhwk)
(3.46

and after some integrations we get

. it t
J—'[r,R]zexp{—%f drf dr’

R(7)K,(7— 7)1 (7")

—iiﬁ(T)K(T—T,)ﬁ(T,) ] (3.47)
where
Ki(r=1")= (7=, (3.49
P
K(r—7r)=——y(r—7'). (3.49

ar?

In terms of the new variables defined in E¢3.39 and
(3.40, we see that the influence functior{al44) has exactly

motion[24], except that they, coefficient presents memory,
i.e., it is non-Markovian. Then we get

Z[j]:f Dr (1) DR(t)el/MSIr R (3.50

with the nonequilibrium effective action

S[F,ﬁ]zfdrﬁ(f) —m"F(T)—fdT'Kl(r—T')F(T')

(3.50

+ IEJ dr'K(r—7)R(7")—=](7)],

where K,(7—7") and K(7—17'),
(3.45 and(3.46), is given by

in accordance with Egs.

2e?
Ki(7— T’)=F Ek [Cos{wk(r—r')ﬂ(r—r’)]

N sifw(7—7")]

Wy

=3(r—17')

Sr—1' )]
(3.52

and the second term cancels in E8.51), and

e? h
K(r—1')=— > wy co§ wy(7— T’)]COII‘(B wk).
L3 % 2
(3.53
The integral in Eq(3.50 can be written as

ex;{—%f de dT'ﬁ(T)K(’T—T')ﬁ(T')

:C(t)JDgexp[—gf dTJ dr’ Z(r)K 1

(3.59

- i o
X(r=7) (") + gf dr{(7)R(7)|,

whereC(t) is a multiplicative factor, and so the generating
functional becomes

Z[j1= f DF(T)Dﬁ(T)DZ(T)P[Z]eXp{;i— f d7R(7)

—m"F(T)—f dr'K (7= 7 (7)) + &) —[(7) ]
(3.55

with the probabilistic distribution of stochastic noiﬁQZ]
given by

P[Z]=fDZexp[—§f drj dT'Z(T)K—l(T—T’)Z(T')],

(3.5
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where{ represents fluctuation force of the bath on short timeBrazilian National Research Council and FAPEMIG-

scales with the Gaussian-noise correlation function Funda@o de Amparo @esquisa do Estado de Minas Gerais.
(L(DL())=hK(1—1"). (3.57) APPENDIX: CONTOUR PATH INTEGRALS
IN REAL TIME

The semiclassical Langevin equation is obtained extrem- . . _
izing the action in Eq(3.55 in relation toli(q-), In.thls section, we are going to present a powerful method
that is called the closed-time-pat@TP) functional-integral
. T . . . formalism and provides the technical means to study the
mf(7)+f dr'Z(r=7)r(r")+j(1)={(7). nonequilibrium dynamics of the quantum field theory in a
o (359 causal manner. This formalism was developed by Schwinger,
: Keldysh, Korenman, and othef8,14-18,10,19-2]1

This is a typical Langevin equation, but that is not the only 1n€ density operatgs contains all the information about
evolution equation we can get, since we can derive witN® €nsemble. For a system described by a HamiltoHian

-~ . - the density operator satisfies the quantum Liouville equation
respect tar (7) and to the noise terri( ).

We can see from Eq$3.52 and(3.53 thatK,(7—7') is ap(t)
non-Markovian, that is, it presents memory and the correla- ih——=[H(t),p(1)]. (A1)
tion functionK(7—7"), but is not aé function like in the dt
guantum Brownian motiof24]. As consequence of this fact,
the correlation function of the noise, under some conditions
can be written as a correlation function of classical forces

In equilibrium statistical mechanics, the density operator is
independent of time which means that the density operator
commutes withH. However, in nonequilibrium statistical
mechanics the density operator does depend on time and the
goal of nonequilibrium quantum field theory is to study the
time evolution of the density operator.

The formal solution of Liouville equation is

(LN (7))y=29kTS8(r—7"), (3.59

in the classical limit ofk T>% w,, shown by Caldeira and
Leggett[24]. Finaly, we see that taking the average of Eq.
(3.58 with the probality distributiorP[ ] we get the equa- p(H)=U(t,t)p(tHU Lt 1)), (A2)
tion of motion(3.30 in the particle coordinate.

We have obtained the same equation of motion by thisyhere(t;) is the initial density operator at time that de-
different approach, giving us some confidence in its validityiarmines the initial conditions for the evolution abu(t,t;)

and generality, and in our conclusion we have obtained & the time development operator defined as
dissipative term arising from the self-fieldelf-correlation

that corresponds to the classical counterpart.
. (A3)

it
U(tf,ti)=eX;{—%J Hs(t/)dt,
IV. CONCLUSION f

The generating functional for an accelerated charge is The case that is particularly of interest to us is the quan-
computed taking a partial trace over the photons degrees #fM evolution of closed system in a time dependent back-
freedom without any approximation obtaining the Green’sground. Let us consider the case where the Hamiltonian is
function for the charge. An important feature for this gener-time dependent after some time sgyfor example, an in-
ating function is the equivalence to the harmonic oscillatort€raction is switched on after) and it is time independent
with sources. before that time, i.eH(t) =H; for t<t;. This means that we

Making an approximation in the modes of the field, we assume that the system has been in equilibrium up &md
get the equation of motion in real time for the Charge thalVV"l evolve out of equilibl’ium thereafter. In this case, the
presents a self-energy kernel that is non-Markovian and #itial density operator is given by
static damping coefficient that exists only for short intervals B
of time. p(t)=e Pt for t<t; (A4)

We analyze the resulting Langevin equation and show _
that it has the same form as the one for the quantum Brown¥here=1/T andT is the temperature of the system.
ian motion, but with a non-Markovian damping coefficient ~ 1N€ €xpectation value of any operaforis
that presents no dependence with the field temperature and a

Gaussian noise. (0(t) = T U(t,t)e AHiu~4(t,t)0]

We have not yet attempted to reproduce the Abraham- Trle PHi]
Becker/Hartemann-Luhmann equations in the classical limit. ) THeAMU(tt)OU- Xt t)] -
- Tr[ e PHi] ' (AS)

ACKNOWLEDGMENTS

A.C.R.M was supported by CNPg-Brazilian National Re-where we used the trace property AEC)=Tr(BCA) and
search Council. F.I.T. was partially supported by CNPg-U1(t,t;)=U(t,t;) in the second equality.

056501-8



RADIATION DAMPING IN REAL TIME PHYSICAL REVIEW E 64 056501

T t O t—7, and J=J# in the imaginary part, segment— r
. ) —ifB. The trace in Eq(A10) may be calculated by intro-
ducing a complete set of coordinéatefield in quantum field

theory) eigenstates|(t)|q)=q(t)|q). Doing so, we have

T —1hf Z[J+,J‘,J5]=f DDA D q|U (7= i% B, 7)[q1)

FIG. 1. Real-ti t .
eartime contours X(qaU - (t, )| a2)(0| U+ (7,0)| Q).

Now consider a timer<t; whereH(t)=H; is indepen- (A12)
dent of time. Then the time development operator is given by

i Using the resulfsee any textbook on path integral
U(T,ti):eXF{_%Hi(T_ti)}, (AG)
it
which commutes withe #Hi. The density operator can be {(dp|U;(tp,ta)|0a)= quxp(%f dtL[q,J]]
expressed in terms of the time development operator with no A(ta(b)) = Ga(o) ta
sources by writing (A13)
eﬁHi:eXF{ - %Hi(T_iﬁB_ 7 |=U(r—ikB,7). we get the generating functional written as
(AT)
Thus Eq.(A5) can be written as Z[J+.J_.JB]=f DqDChD%f Dq*Dq~Dg”
o)) = Tr{U(r—iaB, 1)Ut , nU(7t)U(t;,t)OU(L,t)] it - o
(O(t)= Ti[e P77 Xexp[%ﬁ([,[q J*1-£[q7,J ])dt]
(A8)
i T—ihp
where U(t;,7)U(7,t))=1 was inserted in the trace. Com- xexp[%f E[qB,Jﬁ]dt], (A14)
muting U(t;,7) with p(t;) and using the composition prop- T

erty, U(t;,t))=1 e U(ts,t)U(tq,t;) =U(ts,t;), one obtains
. where £[q,J]=L[q]+%Jq, with the boundary conditions
(o= HEOOEI] - (ag) A ()=¢(ritf)=a; a'(D=q (7=a; and q (7
e "] =%(1)=a;.

Having established the path-integral representation for the
generating functional, we now rewrite it in the interaction
picture, with L= Lo+ L;n; . In the usual manng29,30 we
replace the coordinate in the interaction Lagrangiap,(q),

This corresponds to a process starting at tirset; , propa-
gating to timet, insertingO, and propagating back from time
tto 7—in B in complex time plane, see Fig. 1. The generali-
zation to real-time correlation functions of Heisenberg pic-by a functional differentiation with respect to the source
ture is straightforward. Correlation functions of operatorsg | ions to obtain

may be obtained from the generating functional that couples

the operators to sources, taking functional derivatives with

respect to sources and then setting the sources to zero, in it _

such a way that we can define the nonequilibrium generating Z[J+,J,JB]:GXPr gf [Lin(—176/637)

functional as T

. TH U+ (t, U s(7—ih B8, 1)U (1, 7)] —Lint(iﬁ(S/éJ‘)]dt]
2= Tip(t)] ’ _—
(A10) Xexw’fll—f ' Eint(—ihéléJﬁ)dt]
where T
XZo[IF,37,3°] (A15)

it
Ut ,tf>=Texp| - %f 'dt'(H(t')H(t')q(t'))} :
g . .
(A11)  such thatZ, is the sameZ but with £ replaced by the non-
interacting L.
with the source§=J" being the source in the upper part of  Integrating the quadratic terms #, the generating func-
the contour, segment—t, J=J" in the lower part, segment tional can be cast in the following form:
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Z[J*,J‘,Jﬁ]=exp{ ;,L—f:[/:im(—ih&&]*) Z[J*,J‘]=ex% %—Jx_w[z:im(—ma/ar)

—£int(iﬁ5/5J‘)]dt]
i (g
xexphf ﬁim(—iw/&ﬁ)dt}

i
Xexp{ i 9t | gttt

X G(ty ,tz)J .

—L:im(iﬁa/ar)]dt]

i o0 o0
xexp[ﬁfwdt ledt Ja(th)

XGab(t’—t”)Jb(t”)], (A18)

(A16) where the Green'’s functiors,, are given by
G (Mt t) =G7 (Mt M2, ) Bt — 1)

Taking the limit 7—, the crossed terms id vanish as

consequence of the Riemann-Lesbegue’s lerfitd then +G (1, ty3M5,t0) B(t—ty),

i P NP
Z[\]+vJ_-JB]:eXP|gJ‘ [Line(—i78183") G (ry,tyirp,t) =G (r,t1;r,tp) 6(t,—ty)

+GE (1 tyir2,t) Ot — o),

—Lin(ih 61637 )]dt - - - -

n )]] G (rytyrat)=—G=(ry,ty;rp,t0),

i (r—ihp -~ - > g
Xexq'%J ﬁint(—iﬁéléJﬁ)dt) G (ry,tyirp,t)=—G7(ry,ty;ro,t5)

i T—ihp T—ihp
X eXW' gJ; dTl f,. d’TzJﬁ( Tl)

XGﬁ(Tl_TZ)JB(TZ)]

:_G<(F2,t2;F1,t1)- (A19)

These Green’s functions satisfy the following relation:

G "+G, +G, T+G, =0. (A20)
. In the case of radiation damping, in which the generating
L functional (3.15 is equivalent to the harmonic oscillator we
xexp > dt’ [ dt"J,(t") get

i . , o,
><Gab<t'—t">Jb<t">] (A1) Gi(r=r) =5 e (L pg et Ty,

(A21)
with t’,t” the real time variable and, , 7, running down the
imaginary time axigFig. 1). This term cancels between de-
nominator and numerator in correlation functions. Heye
= +,—, and finally we are led to the generating functional of

real-timecorrelation functions at finite temperature, in or out
of equlibrium

i . , . /
Gy (7= 7')= 5[ (Lt g+,
Zwk
(A22)

where 7, = (e#"*k—1)"1 is the ocupation number.
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