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Radiation damping in real time
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We study the nonequilibrium dynamics of a charge interacting with its own radiation, which originates the
radiation damping. Thereal-timeequation of motion for the charge and the associated Langevin equation is
found in classical limit. The equation of motion for the charge allows one to obtain the frequency-dependent
coefficient of friction. In the lowest order we find that although the coefficient of static friction vanishes, there
is dynamical dissipation represented by a non-Markovian dissipative kernel.
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I. INTRODUCTION AND MOTIVATION

The quantum dynamics of a dissipative system is still
open problem in physics, where the standard quantiza
scheme, that is based on the existence of either a Ha
tonian or a Lagrangian function for the system in which
are interested, is not applicable. It is well known that
cannot obtain an equation of motion from the application
the classical Lagrange’s or Hamilton’s equations to any
grangian or Hamiltonian that has explicit time dependenc

Among some approaches to study this problem, ther
one, proposed by Feynman and Vernon@1# that gives a very
good result. Such approach can be used to study ques
related to quantum dissipative systems@2#, phase transition
@3#, and in particular to the quantum dynamics of a Brown
particle @4#. Another important system with appropriate
characteristic that allows one to use this approach is
study of quantum dynamics of accelerated charge. It i
dissipative system once an accelerated charge loses en
linear momentum, and angular momentum carried by the
diation field. The effect of these losses to the motion
charge is known as radiation damping.

Some works have been done about the motion o
charged particle under the effect of radiation damping. J
to cite some, in the classical limit we have the ones due
Becker @5# and Lorentz@6# and in the relativistic limit the
work by Dirac@7#. Another derivation of the radiation damp
ing force is discussed by Hartemann and Luhmann~HL! @8#.
In that paper, HL obtained classically a covariant express
for the instantaneous radiation damping force on an acce
ated charged particle. This solution had eluded all auth
before them, including those in Refs.@5,6,9–12#. HL derived
the Abraham-Becker radiation damping force classically
the first time. In this work we attempt to derive the sam
radiation damping using quantum dynamics, getting the
mal solution of the equivalent quantum case that is in acc
dance with the results from HL, where the force is linear
the particle velocity.

In another paper, Barone and Caldeira@13# obtained a
nonrelativistic quantum formulation for an accelerated el
tron. They made use of particle plus reservoir model, ‘‘in
grating out’’ the degrees of freedom of fields leading to
effective action for the electron. They applied that formu
tion to the problem of electronic interference.
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In this paper we study the nonequilibrium dynamics
radiation damping phenomenon, using the Schwing
Keldysh @9,14–18,10,19–21# formulation of nonequilibrium
statistical mechanics to obtain the real-time equations of m
tion for the charged particle. The choice in using the re
time field theory instead of the imaginary-time~Euclidean!
formalism, named after Matsubara, is the fact that, in Fou
language, the Matsubara formalism involves discrete co
plex energies, which appear both on internal and exte
lines of Feynman diagrams. The internal energies have to
summed over. The external energies, on the other hand,
a problem because they define the Green functions at a
crete set of points in the complex energy plane. But in or
to answer dynamical questions, a knowledge of real-ti
Green functions is usually indispensable. This implies t
the temperature Green functions have to be extended f
the discrete energies to the real axis. This extension ca
obtained by a process of analytic continuation, but in
case of several complex variables this is a mathematic
difficult task. Even in the case of a single external ener
one is confronted with the problem that such an analy
extension is not unique without further delimitations. So t
Matsubara formalism is well suited to the evaluation of sta
thermodynamic properties and the basic disadvantage o
Matsubara formalism lies in the unphysical representation
time and energy. Analytic continuation can be avoided b
different approach called real-time field theory, based on
concept of a closed time contour in the complex plane r
ning parallel to the real-time axis and back. It involves t
use of both time- and antitime-ordered Green functions
gives rise to an effective doubling of the degrees of freedo
In the real-time formalism, the Green functions can be
rectly obtained as functions of continuous real ene
variables.

Using the real-time formalism, radiation field is treated
the coherent states, since we are interested in obtaining
equation of motion for the particle in the classical limit. Th
is achieved making a partial trace over the radiation fi
getting the effective action for the particle and the cor
sponding Langevin equation.

The Langevin equation leads us to identify the dissipat
kernels and the noise correlation function that reflects
interaction of the charge with the radiation field. These t
terms are related by the fluctuation-dissipation theorem@22#.
©2001 The American Physical Society01-1
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This paper is organized as follows. In Sec. II we wr
down the Hamiltonian of the system charge plus radiat
field, quantizing the field in terms of creation and annihi
tion operators in the conventional way. In Sec. III, we in
grate out the radiation field degrees of freedom, obtaining
effective action, the equation of motion in real time, and
Langevin equation for the particle. We present our conc
sions in Sec. IV pointing out directions of future research.
the Appendix, we present the technical details leading to
generating functional inreal time.

II. THE HAMILTONIAN OF THE SYSTEM

The Hamiltonian describing a charge interacting with
own radiation field can be written as

H5He1H f ~2.1!

where

He5
1

2m
~pW 2eAW !2 ~2.2!

is the Hamiltonian of a moving chargee and massm in the
presence of electromagnetic field@23#.

H f5
1

2E d3xW~EW 21BW 2! ~2.3!

is the the Hamiltonian of the electromagnetic field@11#.
We will use the gauge¹W •AW 50 andf50 once we sup-

pose the fields interacting with the charge was created by
charge in previous time, so when the charge interacts w
them, the fields are free. As free fields, they are transve
fields, so the above conditions hold.

ExpandingAW and its conjugated momentumPW in terms of
normal modes@12# we get

AW ~xW ,t !5(
kl

qkl~ t !uW kl~xW !, ~2.4!

PW ~xW ,t !5(
kl

pkl~ t !uW kl~xW !, ~2.5!

where

uW kl~xW !5L23/2êklexp~ ikW•xW !, ~2.6!

that are plane waves in a box with volumeL3 and êkl (l
51,2) are the polarization vectors satisfying the conditio
kW• êkl50, êkl• êkl85dll8 . uW kl(xW ) are normalized as

E uW kl* ~xW !•uW k8l8~xW !d3xW5dkk8dll8 . ~2.7!

Substituting Eqs.~2.4! and~2.5! into the charge and field
Hamiltonians we get@12#

He5
1

2m FpW 2e(
kl

qkl~ t !uW kl~xW !G2

, ~2.8!
05650
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H f5
1

2 (
kl

@pkl
2 ~ t !1k2qkl

2 ~ t !#, ~2.9!

which have the form expected for the behavior of the rad
tion field considered as a set of infinity uncoupled harmo
oscillators.

For quantizing this system, we make use of creation a
annihilation operators, such that

qkl~ t !5A \

2k
@akl

† ~ t !1akl~ t !#, ~2.10!

pkl~ t !5 iA\k

2
@akl

† ~ t !2akl~ t !#, ~2.11!

satisfying the usual commutation relation,

@qkl~ t !,pk8l8
†

~ t !#5 i\dkk8dll8 ~2.12!

with qkl
† (t)5q2kl(t) and pkl

† (t)5p2kl(t) since the vector
potential and its conjugate momentum are taken to be re

Substituting Eqs.~2.10! and ~2.11! in the equations~2.8!
and ~2.9!, we get

H5
1

2m
~pW 2h@akl

† ,akl#!21H f@akl
† ,akl#, ~2.13!

where

h@akl
† ,akl#5e(

kl
A \

2k
@akl

† ~ t !1akl~ t !#uW kl~xW !,

~2.14!

H f@akl
† ,akl#5\(

kl
vk~akl

† ~ t !akl~ t !11/2!. ~2.15!

As mentioned before, our main goal in this paper is
study the dynamics of a charge interacting with its own
diation field. Physically, we are interested in the correlat
function of the charge and not in the properties of the fie
So, we will apply the formalism of path integral in real tim
considering the photons coming from the radiation as a b
that will be traced over to give us the effective action for t
charge.

As radiation field appears only when the charge is acc
erated, we introduce an external classical field, under wh
the charge has an accelerated motion. This field couple
the charge aseEW(t) where we can definejW(t) as jW(t)
5eEW(t), giving the following contribution to the Lagrangian

Lext52 jW~ t !•xW~ t !, ~2.16!

where we suppose the field is switched on att50,

jW~ t !5H 0W if t,0,

jW if t.0,
~2.17!

giving us the Lagrangian,
1-2
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L@xẆ ,akl
† ,akl#5

m

2
xẆ21xẆe(

kl
A \

2k
@akl

† ~ t !1akl~ t !#uW kl~xW !

2\(
kl

vk„akl
† ~ t !akl~ t !11/2…2 jW~ t !•xW~ t !.

~2.18!

III. THE REAL-TIME GENERATING FUNCTIONAL

There are different ways to fix the initial condition for th
kind of problem, such as the one where the system in in
est, in our case the particle, and the reservoir~the radiation
field! are interacting since the beginning@4#. However, we
will use one, where the total density matrix for the partic
field is in thermal equilibrium at a temperatureT until the
particle decouples at the initial timet50 @1,24#. Here, the
interaction is switched on when the charge is put in the p
ence of the classical field, because it is when the part
starts to radiate@1,24# and the system departs from the co
dition where the particle and the bath are in equilibriu
@25–28#.

At time zero we write the total density matrix as a produ
of the density matrices for the free charge and its own ra
tion field ~the bath!

r~ t i !5re~ t i ! ^ r f~ t i !, ~3.1!

wherere(t i) is the density matrix for the particle, conside
ing it as a free particle,re(t i)5uxW &^xW u andr f(t i) is the den-
sity matrix for the bath of photons in thermal equilibrium
temperatureT, given by

r f~ t i !5
e2bH f

Z
, ~3.2!

with

Z5trf~e2bH f !. ~3.3!

H f is the Hamiltonian for the free field given by Eq.~2.15!.
The closure relation of the system charge1radiation field

is

E d2a

pN E dxW uxW ,a&^xW ,au51, ~3.4!

where we use the coordinate representation for the parti

xW uxW &5xW uxW & ~3.5!

and the coherent states representation for the field radi
by the particle

ua&5ua1& ^ ua2& ^ •••^ uaN& ~3.6!

with N being infinity.
In terms of evolution operatorU(t,2`) the generating

functional in real time is given by
05650
r-

s-
le

t
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Z@ j #5
1

tr r~ t i !
E d2a

pN
^a,xW uU j 1~ t,2`!r~ t i !U j 2

21

3~ t,2`!uyW ,a& ~3.7!

or

Z@ j #5
1

tr r~ t i !
E dxW8E dyW 8re~xW8,yW 8,t i !

3E d2a

pN

d2g

pN

d2d

pN
^gur f~ t i !ud&

3^xW ,auU j 1~ t,2`!uxW8,g&^yW 8,duU j 2
21

~ t,2`!uyW ,a&

~3.8!

with

re~xW8,yW 8;t i !5^xW8ure~ t i !uyW 8&, ~3.9!

^gur f~ t i !ud&5
1

Z )
k51

N

expH 2
ugku2

2
2

udku2

2
1gk* dke

2b\vkJ ,

~3.10!

Z~ t !5)
k51

N

@12exp~2b\vk!#
21eb\vk/2. ~3.11!

Nonequilibrium Green’s functions are obtained as fun
tional derivatives with respect to the sourcesj andJ ~see the
Appendix!. There are four types of free propagators@9,14–
18,10,19–21#. Using them, we get

Z@ j ,J#5
1

tr r~ t i !
E dxW8dyW 8re~xW8,yW 8,t i !

3E DxW 1~t!DxW 2~t!

3expH i

\
~S0@xW 1#2S0@xW 2# !JZ@J1,J2#,

~3.12!

where

DxW~t!5 lim
N→` «→0

H S m

2p i\ D N/2

)
j 51

N21

dxW j J ~3.13!

and

S0@xW #5E
2`

t

dtH m

2
xẆ2~t!2 jW~t!xW~t!J . ~3.14!

S0@xW # is the action for the charge when it is not coupled
the radiation field.

The termZ@J1,J2# in Eq. ~3.12! plays the role of influ-
ence functional@24# equivalent to the harmonic oscillato
generating functional@9,14–18,10,19,20#,
1-3
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Z@J1,J2#5expH 2(
kl

(
l8

E
2`

t

dtE
2`

t

dt8@Jkl
1†~t!Jkl8

1
~t8!

3$u~t2t8!1hk%1Jkl
2†~t!Jkl8

2
~t8!$u~t82t!

1hk%2Jkl
1†~t!Jkl8

2
~t8!hk2Jkl

2†~t!Jkl8
1

~t8!

3~11hk!#e
2 ivk(t2t8)J , ~3.15!
05650
where the linear coupling acts as a ‘‘source’’ term and m
be written as

Jkl~ t !5Jkl
† ~ t !52

e

A2\k
xẆ ~ t !•uW kl~xW !. ~3.16!

So far, no approximation has been made, that is, our re
for the generating functional~3.15! is exact.

Writing Z@J1,J2# in terms of the particle coordinates, w
get the influence functional
een the
F@xW 1,xW 2#5expH 2E
2`

t

dtE
2`

t

dt8(
kl

(
l8

e2

2\kL3
@$xẆ 1~t!• êkl%eikW•xW1(t)$u~t2t8!1hk%$xẆ

1~t8!êkl8%e
ikW•xW1(t8)

2$xẆ 2~t!• êkl%eikW•xW2(t)$u~t82t!1hk%$xẆ
2~t8!• êkl8%e

ikW•xW2(t8)2$xẆ 2~t!êkl%eikW•xW2(t)~11hk!

3$xẆ 1~t8!êkl8%e
ikW•xW1(t8)2$xẆ 1~t!êkl%eikW•xW1(t)~hk!$xẆ

2~t8!êkl8%e
ikW•xW2(t8)#e2 ivk(t2t8)J ~3.17!

that bears all the information about the effect of the radiation field on the charge. When there is no interaction betw
system of interest and environment the influence functional is equal to one.

This influence functional can be written as

F@xW 1,xW 2#5expH 2E
2`

t

dtE
2`

t

dt8(
k

e2

\kL3
@xẆ 1~t!xẆ 1~t8!exp$ ikW•xW 1~t!1 ikW•xW 1~t8!Gk

11~t2t8!

1xẆ 2~t!xẆ 2~t8!exp$ ikW•xW 2~t!1 ikW•xW 2~t8!%Gk
22~t2t8!1xẆ 2~t!xẆ 1~t8!

3exp$ ikW•xW 2~t!1 ikW•xW 1~t8!%Gk
21~t2t8!1xẆ 1~t!xẆ 2~t8!exp$ ikW•xW 1~t!1 ikW•xW 2~t8!%Gk

12~t2t8!,

~3.18!
n-
where

G11~rW1 ,t1 ;rW2 ,t2!5G.~rW1 ,t1 ;rW2 ,t2!u~ t12t2!

1G,~rW1 ,t1 ;rW2 ,t2!u~ t22t1!,

G22~rW1 ,t1 ;rW2 ,t2!5G.~rW1 ,t1 ;rW2 ,t2!u~ t22t1!

1G,~rW1 ,t1 ;rW2 ,t2!u~ t12t2!,

G12~rW1 ,t1 ;rW2 ,t2!52G,~rW1 ,t1 ;rW2 ,t2!,

G21~rW1 ,t1 ;rW2 ,t2!52G.~rW1 ,t1 ;rW2 ,t2!

52G,~rW2 ,t2 ;rW1 ,t1!, ~3.19!

with

Gk
,~t2t8!5

i

2vk
@eivk(t2t8)~11hk!1e2 ivk(t2t8)hk#,

~3.20!
Gk
.~t2t8!5

i

2vk
@e2 ivk(t2t8)~11hk!1eivk(t2t8)hk#,

~3.21!

andhk5(eb\vk21)21 is the ocupation number. So, the ge
erating functional is

Z@ j #5
1

tr r~ t i !
E dxW8dyW 8re~xW8,yW 8,t i !Z̃@ j #, ~3.22!

where

Z̃@ j #5E DxW 1~t!DxW 2~t!exp$~ i /\!S@xW 1,xW 2#%

~3.23!

with
1-4
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S@xW 1,xW 2#5E
2`

t

dtH m

2
@xẆ 12

~t!2xẆ 22
~t!#2 jW~t!@xW 1~t!

2xW 2~t!#1E
2`

t

dt8(
k

e2

L3
@xẆa~t!xẆb~t8!

3exp$ ikW•@xWa~t!1xWb~t8!#%Gk
ab~t2t8!#J

~3.24!
anda,b51,2.

To study the dynamic of the charge, we need to find
equation of motion obeyed by the charge after we integ
out the radiation field. At this point we are not able to han
with the exact result above, so we need to use some app
mation. The approximation we use is the background fi
approximation in which one fluctuation from the classic fie
is taken in account.

A. The equation of motion of charge and its properties

To use the background field approximation, we consi
the situation where the exponentialeikW•xW can be approxi-
mated as
,
n

05650
e
te
e
xi-
d

r

eikW•xWa(t)'1 ~3.25!

leading the influence functional~3.18! to

F@xW 1,xW 2#5expH i

\E2`

t

dtE
2`

t

dt8(
k

e2

L3
@xẆ 1~t!xẆ 1~t8!

3Gk
11~t2t8!1xẆ 1~t!xẆ 2~t8!Gk

12~t2t8!

1xẆ 2~t!xẆ 2~t8!Gk
22~t2t8!

1xẆ 2~t!xẆ 1~t8!Gk
21~t2t8!#J . ~3.26!

In this limit, the equation of motion for the charge can
obtained in the background approximation,xW 6(t)5qW (t)
1jW 6(t), where ^jW 6(t)&50 in all orders in perturbation
theory. So the influence functional,F@xW 1,xW 2#, reads
F@qW 1jW 6#5expH i

\E2`

t

dtE
2`

t

dt8(
k

2e2

L3
@jẆ 1~t!qẆ ~t8!Gk

11~t2t8!1jẆ 1~t!qẆ ~t8!Gk
12~t2t8!

1jẆ 2~t!qẆ ~t8!Gk
22~t2t8!1jẆ 2~t!qẆ ~t8!Gk

21~t2t8!#J expH i

\E2`

t

dtE
2`

t

dt8(
k

2e2

L3

3@jẆ 1~t!jẆ 1~t8!Gk
11~t2t8!1jẆ 1~t!jẆ 2~t8!Gk

12~t2t8!1jẆ 2~t!jẆ 2~t8!Gk
22~t2t8!

1jẆ 2~t!jẆ 1~t8!Gk
21~t2t8!#J , ~3.27!
where we usedGk
12(t2t8)5Gk

21(t82t) and Gk
11

1Gk
221Gk

211Gk
1250. Together with the condition

^j1(t8)&50 and taking the perturbation theory up to seco
order, we get the following equation of motion:

E
2`

t

dt8^jW 1~t!jẆ 1~t8!&F H mqẆ ~t8!1E
2`

t

dt9G

3~t82t9!qẆ ~t9!J 1^jW 1~t!jW 1~t8!& jW~t8!G50,

~3.28!

where
d

G~t82t9!5
2e2

L3 (
k

@Gk
11~t82t9!1Gk

12~t82t9!#

5
2e2

L3 (
k

sin@vk~t82t9!#

vk
u~t82t9!, ~3.29!

in accordance with Eq.~3.19!.
Integrating out thet8 in Eq. ~3.28!, we get

mVẆ ~t!1E
2`

t

dt8S~t2t8!VW ~t8!5 jW~t!, ~3.30!

where
1-5
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S~t2t8!5
]

]t
G~t2t8!. ~3.31!

Making use of Eq.~3.29!, we find

S~t2t8!5
2e2

L3 (
k

H cos@vk~t2t8!#u~t2t8!

1
sin@vk~t2t8!#

vk
d~t2t8!J . ~3.32!

As a consequence of the use of adiabatic approximat

E
2`

t

dt8S~ t2t8!50, ~ t,0! ~3.33!

when we switch on the external classical field att50, if the
charge is with a constant velocityvW 0 for t,0, it will be
accelerated and will radiate, transfer energy and momen
to the radiated photons, getting to the process of dissipa
So, writing the velocity of charge asVW (t)5vW 01vW (t), we
have

mvẆ ~t!1E
0

t

dt8S~t2t8!vW ~t8!5 jW~t! ~3.34!

considering Eq.~3.33!.
The solution for the equation of motion can be fou

using the Laplace transform of the velocityvW̃ (s), self-energy

of the kernelS̃(s) and of the external forcejW̃(s). In terms of
the Laplace variables, we get

vW̃ ~s!5
vW 01~ jW̃~s!/m!

s1
1

m
S̃~s!

. ~3.35!

The evolution on the real time can be found via inve
Laplace transform

vW ~ t !5
1

2p i Ec
estvW̃ ~s!ds, ~3.36!

wherec is the Bromwich contour, that is at the imagina

axe at the right of all singularities ofvW̃ (s) in the complex
plan s. For the purpose of understanding the real time
namics, we need to study the analytical structure ofG(s)

[@s1(1/m)S̃(s)#21. From Eqs.~3.29! and ~3.31! we have

S̃~s!5sG̃~s!, ~3.37!

G̃~s!5
2e2

L3 (
k

1

s21vk
2

, ~3.38!
05650
n,

m
n.

e

-

whereG̃(s) is the Laplace transform ofG(t2t8).
The presence of static damping coefficient is given b

pole in G(s) with a negative real part, because this turns
an exponential of velocity relaxation, as occurs in the dam
ing harmonic oscillator.

In the absence of interaction,G(s) has a simple pole a

s50, that is, the static damping coefficient cancels,@S̃(s)
50# for (t→`), meaning that the system does not pres
radiation damping. This is consistent with the discussio
about the accelerated electron@11#, where it is shown the
effect of radiation damping is relevant only for short tim
intervals (;10224s for electron!.

B. Semiclassical Langevin equation

Another important method used to study the nonequi
rium dynamics of a particle coupled to a dissipative medi
is finding the equation of motion that looks like the Langev
equation for a particle taking in account the effect of t
medium. This interaction introduces a stochastic dissipa
term in the equation of motion, both related by th
fluctuation-dissipation theorem.

A description of the dynamic of nonequilibrium of th
system by the Langevin equation can be seen in many
pers, e.g,@3,4#, among others. In these papers, the start
point is the application of the Feynman and Vernon form
ism @1# for the generating functional, what gives natura
the semiclassical Langevin equation.

The equation~3.23! is the first step that was already don

Now, considering new coordinates,rW andRW , defined as

rW~ t !5
1

2
@xW 1~ t !1xW 2~ t !#, ~3.39!

RW ~ t !5xW 1~ t !2xW 2~ t !, ~3.40!

we find

Z̃@ j #5E DrW~ t !DRW ~ t !ei /\S̃[ rW,RW ]F@rW,RW # ~3.41!

with

S̃@rW,RW #5E
2`

t

$mRẆ ~t!rẆ~t!2 jW~t!RW ~t!%dt ~3.42!

and
1-6
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F@rW,RW #5expH i

\E2`

t

dtE
2`

t

dt8(
k

e2

L3

3FRẆ ~t!RẆ ~t8!

4
$Gk

11~t!1Gk
22~t!2Gk

12~t!

2Gk
21~t!%1

RẆ ~t!rẆ~t8!

2
$Gk

11~t!2Gk
22~t!

1Gk
12~t!2Gk

21~t!%1
rẆ~t!RẆ ~t8!

2
$Gk

11~t!

2Gk
22~t!2Gk

12~t!1Gk
21~t!%G J , ~3.43!

whereGk
ab(t)5Gk

ab(t2t8). With the changet↔t8 in the

third term ofF@rW,RW # and with Eq.~3.19!, the influence func-
tional is

F@rW,RW #5expH i

\E2`

t

dtE
2`

t

dt8FRẆ ~t!g I~t2t8!rẆ~t8!

1
i

2
RẆ ~t!g~t2t8!RẆ ~t8!G J ~3.44!

with

g I~t2t8!5
2e2

L3 (
k

sin@vk~t2t8!#

vk
u~t2t8!

~3.45!

and

g~t2t8!5
e2

L3 (
k

cos@vk~t2t8!#

vk
cothS b\vk

2 D ,

~3.46!

and after some integrations we get

F@rW,RW #5expH 2
i

\E2`

t

dtE
2`

t

dt8FRW ~t!KI~t2t8!rẆ~t8!

2
i

2
RW ~t!K~t2t8!RW ~t8!G J , ~3.47!

where

KI~t2t8!5
]

]t
g I~t2t8!, ~3.48!

K~t2t8!52
]2

]t2
g~t2t8!. ~3.49!

In terms of the new variables defined in Eqs.~3.39! and
~3.40!, we see that the influence functional~3.44! has exactly
05650
the same form as the one obtained in the quantum Brown
motion @24#, except that theg I coefficient presents memory
i.e., it is non-Markovian. Then we get

Z̃@ j #5E DrW~ t !DRW ~ t !e( i /\)S[ rW,RW ] ~3.50!

with the nonequilibrium effective action

S@rW,RW #5E dtRW ~t!F2mrẄ~t!2E dt8KI~t2t8!rẆ~t8!

1
i

2E dt8K~t2t8!RW ~t8!2 jW~t!G , ~3.51!

where KI(t2t8) and K(t2t8), in accordance with Eqs
~3.45! and ~3.46!, is given by

KI~t2t8!5
2e2

L3 (
k

H cos@vk~t2t8!u~t2t8!#

1
sin@vk~t2t8!#

vk
d~t2t8!J

5S~t2t8! ~3.52!

and the second term cancels in Eq.~3.51!, and

K~t2t8!5
e2

L3 (
k

vk cos@vk~t2t8!#cothS b\vk

2 D .

~3.53!

The integral in Eq.~3.50! can be written as

expF2
1

2\E dtE dt8RW ~t!K~t2t8!RW ~t8!G
5C~ t !E Dz expF2

\

2E dtE dt8zW~t!K21

3~t2t8!zW~t8!1
i

\E dtzW~t!RW ~t!G , ~3.54!

whereC(t) is a multiplicative factor, and so the generatin
functional becomes

Z̃@ j #5E DrW~t!DRW ~t!DzW~t!P@zW #expH i

\E dtRW ~t!

3F2mrẄ~t!2E dt8KI~t2t8!rẆ~t8!1zW~t!2 jW~t!G J
~3.55!

with the probabilistic distribution of stochastic noiseP@zW #
given by

P@zW #5E DzW expH 2
\

2E dtE dt8zW~t!K21~t2t8!zW~t8!J ,

~3.56!
1-7
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wherez represents fluctuation force of the bath on short ti
scales with the Gaussian-noise correlation function

^zW~t!zW~t8!&5\K~t2t8!. ~3.57!

The semiclassical Langevin equation is obtained extre
izing the action in Eq.~3.55! in relation toRW (t),

mrẄ~t!1E
2`

t

dt8S~t2t8!rẆ~t8!1 jW~t!5zW~t!.

~3.58!

This is a typical Langevin equation, but that is not the on
evolution equation we can get, since we can derive w
respect torW(t) and to the noise termzW (t).

We can see from Eqs.~3.52! and~3.53! thatKI(t2t8) is
non-Markovian, that is, it presents memory and the corre
tion function K(t2t8), but is not ad function like in the
quantum Brownian motion@24#. As consequence of this fac
the correlation function of the noise, under some conditio
can be written as a correlation function of classical force

^zW~t!zW~t8!&[2hkTd~t2t8!, ~3.59!

in the classical limit ofkT@\vk , shown by Caldeira and
Leggett @24#. Finaly, we see that taking the average of E
~3.58! with the probality distributionP@zW # we get the equa-
tion of motion ~3.30! in the particle coordinate.

We have obtained the same equation of motion by
different approach, giving us some confidence in its valid
and generality, and in our conclusion we have obtaine
dissipative term arising from the self-field~self-correlation!
that corresponds to the classical counterpart.

IV. CONCLUSION

The generating functional for an accelerated charge
computed taking a partial trace over the photons degree
freedom without any approximation obtaining the Gree
function for the charge. An important feature for this gen
ating function is the equivalence to the harmonic oscilla
with sources.

Making an approximation in the modes of the field, w
get the equation of motion in real time for the charge t
presents a self-energy kernel that is non-Markovian an
static damping coefficient that exists only for short interv
of time.

We analyze the resulting Langevin equation and sh
that it has the same form as the one for the quantum Bro
ian motion, but with a non-Markovian damping coefficie
that presents no dependence with the field temperature a
Gaussian noise.

We have not yet attempted to reproduce the Abraha
Becker/Hartemann-Luhmann equations in the classical lim
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APPENDIX: CONTOUR PATH INTEGRALS
IN REAL TIME

In this section, we are going to present a powerful meth
that is called the closed-time-path~CTP! functional-integral
formalism and provides the technical means to study
nonequilibrium dynamics of the quantum field theory in
causal manner. This formalism was developed by Schwin
Keldysh, Korenman, and others@9,14–18,10,19–21#.

The density operatorr contains all the information abou
the ensemble. For a system described by a HamiltonianH,
the density operator satisfies the quantum Liouville equa

i\
]r~ t !

]t
5@H~ t !,r~ t !#. ~A1!

In equilibrium statistical mechanics, the density operator
independent of time which means that the density oper
commutes withH. However, in nonequilibrium statistica
mechanics the density operator does depend on time and
goal of nonequilibrium quantum field theory is to study t
time evolution of the density operator.

The formal solution of Liouville equation is

r~ t !5U~ t,t i !r~ t i !U
21~ t,t i !, ~A2!

wherer(t i) is the initial density operator at timet i that de-
termines the initial conditions for the evolution andU(t,t i)
is the time development operator defined as

U~ t f ,t i !5expF2
i

\Et i

t f
Hs~ t8!dt8G . ~A3!

The case that is particularly of interest to us is the qu
tum evolution of closed system in a time dependent ba
ground. Let us consider the case where the Hamiltonia
time dependent after some time sayt i ~for example, an in-
teraction is switched on aftert i) and it is time independen
before that time, i.e.,H(t)5Hi for t<t i . This means that we
assume that the system has been in equilibrium up tot i and
will evolve out of equilibrium thereafter. In this case, th
initial density operator is given by

r~ t i !5e2bHi for t<t i ~A4!

whereb51/T andT is the temperature of the system.
The expectation value of any operatorO is

^O~ t !&5
Tr@U~ t,t i !e

2bHiU21~ t,t i !O#

Tr@e2bHi#

5
Tr@e2bHiU~ t,t i !OU21~ t,t i !#

Tr@e2bHi#
, ~A5!

where we used the trace property Tr(ABC)5Tr(BCA) and
U21(t,t i)5U(t,t i) in the second equality.
1-8
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Now consider a timet,t i whereH(t)5Hi is indepen-
dent of time. Then the time development operator is given

U~t,t i !5expF2
i

\
Hi~t2t i !G , ~A6!

which commutes withe2bHi. The density operator can b
expressed in terms of the time development operator with
sources by writing

e2bHi5expF2
i

\
Hi~t2 i\b2t!G5U~t2 i\b,t!.

~A7!

Thus Eq.~A5! can be written as

^O~ t !&5
Tr@U~t2 i\b,t!U~ t i ,t!U~t,t i !U~ t i ,t !OU~ t,t i !#

Tr@e2bHi#
~A8!

where U(t i ,t)U(t,t i)51 was inserted in the trace. Com
muting U(t i ,t) with r(t i) and using the composition prop
erty, U(t i ,t i)51 e U(t f ,t1)U(t1 ,t i)5U(t f ,t i), one obtains

^O~ t !&5
Tr@U~t2 i\b,t!OU~ t,t!#

Tr@e2bHi#
. ~A9!

This corresponds to a process starting at timet,t i , propa-
gating to timet, insertingO, and propagating back from tim
t to t2 i\b in complex time plane, see Fig. 1. The genera
zation to real-time correlation functions of Heisenberg p
ture is straightforward. Correlation functions of operato
may be obtained from the generating functional that coup
the operators to sources, taking functional derivatives w
respect to sources and then setting the sources to zer
such a way that we can define the nonequilibrium genera
functional as

Z@J1,J2#5
Tr@UJ1~ t,t!UJb~t2 i\b,t!UJ2

21
~ t,t!#

Tr@r~ t i !#
,

~A10!

where

UJ~ t i ,t f !5T expH 2
i

\Et i

t f
dt8„H~ t8!1J~ t8!q~ t8!…J ,

~A11!

with the sourcesJ5J1 being the source in the upper part
the contour, segmentt→t, J5J2 in the lower part, segmen

FIG. 1. Real-time contours.
05650
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t→t, and J5Jb in the imaginary part, segmentt→t
2 i\b. The trace in Eq.~A10! may be calculated by intro
ducing a complete set of coordinate~or field in quantum field
theory! eigenstatesq̂(t)uq&5q(t)uq&. Doing so, we have

Z@J1,J2,Jb#5E DqDq1Dq2^quUJb~t2 i\b,t!uq1&

3^q1uUJ2~ t,t!uq2&^q2uUJ1~t,t !uq&.

~A12!

Using the result~see any textbook on path integral!

^qbuUJ~ tb ,ta!uqa&5E
q(ta(b))5qa(b)

DqexpH i

\Eta

tb
dtL@q,J#J

~A13!

we get the generating functional written as

Z@J1,J2,Jb#5E DqDq1Dq2E Dq1Dq2Dqb

3expH i

\Et

t

~L@q1,J1#2L@q2,J2# !dtJ
3expH i

\Et

t2 i\b

L@qb,Jb#dtJ , ~A14!

where L@q,J#5L@q#1\Jq, with the boundary conditions
q1(t)5qb(t2 i\b)5q; q1(t)5q2(t)5q2 and q2(t)
5qb(t)5q1.

Having established the path-integral representation for
generating functional, we now rewrite it in the interactio
picture, withL5L01Lint . In the usual manner@29,30# we
replace the coordinate in the interaction Lagrangian,Lint(q),
by a functional differentiation with respect to the sour
functions to obtain

Z@J1,J2,Jb#5expH i

\Et

t

@Lint~2 i\d/dJ1!

2Lint~ i\d/dJ2!#dtJ
3expH i

\Et

t2 i\b

Lint~2 i\d/dJb!dtJ
3Z0@J1,J2,Jb# ~A15!

such thatZ0 is the sameZ but with L replaced by the non-
interactingL0.

Integrating the quadratic terms inZ0, the generating func-
tional can be cast in the following form:
1-9
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Z@J1,J2,Jb#5expH i

\Et

t

@Lint~2 i\d/dJ1!

2Lint~ i\d/dJ2!#dtJ
3expH i

\Et

t2 i\b

Lint~2 i\d/dJb!dtJ
3expH i

2\Ec
dt1E

c
dt2Jc~ t1!Jc~ t2!

3Gc~ t1 ,t2!J . ~A16!

Taking the limit t→`, the crossed terms inZ vanish as
consequence of the Riemann-Lesbegue’s lemma@19#, then

Z@J1,J2,Jb#5expH i

\Et

t

@Lint~2 i\d/dJ1!

2Lint~ i\d/dJ2!#dtJ
3expH i

\Et

t2 i\b

Lint~2 i\d/dJb!dtJ
3expH i

2\Et

t2 i\b

dt1E
t

t2 i\b

dt2Jb~t1!

3Gb~t12t2!Jb~t2!J
3expH i

2\Et

t

dt8E
t

t

dt9Ja~ t8!

3Gab~ t82t9!Jb~ t9!J ~A17!

with t8,t9 the real time variable andt1 ,t2 running down the
imaginary time axis~Fig. 1!. This term cancels between de
nominator and numerator in correlation functions. Herea,b
51,2, and finally we are led to the generating functional
real-timecorrelation functions at finite temperature, in or o
of equlibrium
05650
f
t

Z@J1,J2#5expH i

\ È
2`

@Lint~2 i\d/dJ1!

2Lint~ i\d/dJ2!#dtJ
3expH i

2\E2`

`

dt8E
2`

`

dt9Ja~ t8!

3Gab~ t82t9!Jb~ t9!J , ~A18!

where the Green’s functionsGab are given by

G11~rW1 ,t1 ;rW2 ,t2!5G.~rW1 ,t1 ;rW2 ,t2!u~ t12t2!

1G,~rW1 ,t1 ;rW2 ,t2!u~ t22t1!,

G22~rW1 ,t1 ;rW2 ,t2!5G.~rW1 ,t1 ;rW2 ,t2!u~ t22t1!

1G,~rW1 ,t1 ;rW2 ,t2!u~ t12t2!,

G12~rW1 ,t1 ;rW2 ,t2!52G,~rW1 ,t1 ;rW2 ,t2!,

G21~rW1 ,t1 ;rW2 ,t2!52G.~rW1 ,t1 ;rW2 ,t2!

52G,~rW2 ,t2 ;rW1 ,t1!. ~A19!

These Green’s functions satisfy the following relation:

Gk
111Gk

221Gk
211Gk

1250. ~A20!

In the case of radiation damping, in which the generat
functional ~3.15! is equivalent to the harmonic oscillator w
get

Gk
,~t2t8!5

i

2vk
@eivk(t2t8)~11hk!1e2 ivk(t2t8)hk#,

~A21!

Gk
.~t2t8!5

i

2vk
@e2 ivk(t2t8)~11hk!1eivk(t2t8)hk#,

~A22!

wherehk5(eb\vk21)21 is the ocupation number.
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@29# D. Lurié, Particles and Fields~Interscience, New York, 1968!.
@30# E.S. Abers and B.W. Lee, Phys. Rep.9, 1 ~1973!.
1-11


